<<12345>>
6.

If 2x-y+1=0,  is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$  , then which of the following CANNOT be sides of a right angled triangle?


A) a.4,1

B) 2a,4,1

C) a,4,2

D) 2a,8,1



7.

Let a,b,x and y be real numbers such that a-b=1 and y≠ o. If the complex number z=x+iy satisfies  $Im(\frac{az+b}{z+1})=y$ , then which of the following is(are) possible value(s) of x?


A) $1-\sqrt{1+y^{2}}$

B) $-1-\sqrt{1-y^{2}}$

C) $1+\sqrt{1+y^{2}}$

D) $-1+\sqrt{1-y^{2}}$



8.

Let f: R→ (0,1) be a continuous function. Then, which of the following function (s) has (have) the value zero at some point in the interval (0,1)?


A) $e^{x}-\int_{0}^{x} f(t) \sin t dt $

B) $f(x)+\int_{0}^{\frac{\pi}{2}} f(t)\sin t dt$

C) $x-\int_{0}^{\frac{\pi}{2}-x} f(t)\cos t dt$

D) $x^{9}-f(x)$



9.

Let X and Y the two events such  $P(X)=\frac{1}{3}$ , $P(X\mid Y)= \frac{1}{2}$, $P(Y\mid X)= \frac{2}{5}$    Then


A) $P(Y)= \frac{4}{15}$

B) $P(X'\mid Y)= \frac{1}{2}$

C) $P(X\cup Y)= \frac{2}{5}$

D) $P(X\cap Y)= \frac{1}{5}$



10.

Let O be the origin and OX, OY, OZ be three unit vectors in the directions of the sides QR,RP,PQ respectively of triangle PQR.

I f the triangle PQR varies, then the minimum value of $\cos(P+Q)+\cos(Q+R)+\cos(R+P)$ is


A) $-\frac{3}{2}$

B) $\frac{3}{2}$

C) $\frac{5}{3}$

D) $-\frac{5}{3}$



<<12345>>